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%... Mold Oscillation System at NUCOR

Mold displacement and velocity

Mold Table

Pivot

Problem:

1. Resonance mode of primary beam

. gets excited when the actuator

Primary Beam oscillates at one-third the resonance
frequency

2. This unwanted resonance distorts the
mold displacement and velocity profile

Position of Hydraulic Actuator

Objective: Model this mold oscillation
system, simulate it, identify the source of
disturbance and control it

(not in picture) under the beam
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Simplified mock-up
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Beam M
[e]
Z X L
Hydraulic
Actuator
. Mock-up captures similar resonance problem
- 1) resonant frequency = 9.6Hz
- 2) input at 4.8Hz excites 9.6Hz
. Beam is modeled using Timoshenko beam model
. Heavy Mold, significant dynamics accounted for in Boundary conditions
. Hydraulic actuator — Nonlinear behavior (same model as plant)
. Beam and actuator coupled using boundary condition
. Metals Processing Simulation Lab . BG Thomas 3
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Timoshenko Beam Model
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x==L vt x=1
.
A ASSAN .
w(t) Left beam =0 Right beam " Mg (Mold weight)

1D dynamic beam transverse displacement PDE
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Mock-up parameters

E =200Gpa Youngs modulus
p=7870 Kg /m”’ - density of steel

I1=2.2x10"m"* Moment of inertia of beam

G =82GPa Shear Modulus for steel

Area =0.0088m” cross section area of beam
m =69Kg / m Mass per unit length of beam
k'=0.83 Shear constant
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M=2250 Kgs
Beam width =5.13"(hollow with thickness 0.94") 1=34.5"
Beam breadth = 6' (hollow with thickness 0.38')
. Metals Processing Simulation Lab .

Solve these 4 Partial
differential equations
simultaneously
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K Simulated displacement histories
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x 10°  Free vibration due to gravity Forced vibration (amp-0.001m, freq-9.6Hz)
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+ Simulation of the four partial differential equations with the actual parameters indicates the beam
resonance frequency is 10.6 Hz

+ Simulation after changing moment of inertia slightly (factor of 1.15) gives a resonance frequency of 9.6Hz
 Experimental resonance frequency is 9.6Hz
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Electronic control of spool position

Fast dynamics - Hence not modelled in simulations

32 Turbulent Flow Equations for flow in A and B

c(d-x)JyP-P, x,<-d

q,= C(d—x\)\/ﬁ—c(x\+d) P, -P —d<x <d
—c(x,+d)JP,-B  x,>d
c(d—x() P,-F, x, <—d

q, = C(d—x\)m—c(xv-#d)m —d<x <d
7c(xr+d)ﬂ x,>d

X, is positive when the spool moves to the right. Its mean

i 12 122

L1,
AV |V AV v
¥

position is 0 with valve underlap gap of d on both sides.

q,, is positive when oil flows in to chamber A
g, is positive when oil flows out of chamber B

g, P—Volume flow rate and Pressure

B @, ., — Chamber connected to A and B, source, tank

A Pressure equations
B

b= (V,,+A(L+w))("FAW)

' s B
Actuator dynamic equations %= (VK+A(L—W))( 9 +4%)

miv=(P,—Py) A+ F —( fric)w w— positive if it moves to right of midpoint of cylinder

w - Actuator displacement V.V, —Static volume of chambers A and B

A(L+w)—dynamic volume of chamber A and B
Set of Nonlinear Differential Equations L~ Half the piston stroke length

A~ Surface area of piston
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Sasting Hydraulic Actuator contd.
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Force acting on actuator due to beam Control law that determines spool position
Control law
, Wy, :
F=-kGA| ==-y, X = f (ww ) =, (W= )+ [ (w=w,, )
ox — ! 2

State space form of actuator equations

=R ; Parameters for mock-up
. . A, u
%y == (frie)x, + (5 —x,)——k GA[*"—V/,J d=1.27x10"m
m ox e
B A=0.0046m"
=L (q,— Ax, :
ST, +A(L+x]))(q”' ) P, =3000Psi
B 4 P, =30Psi
X =t ——(-q, +4x
! (V8+A(L—xl))( 9+ 4%) c=3x10"
c(d-x)\P-x x<-d vV, =2.875inch’
q,=3c(d=x)P—x,—c(x,+d)\x,— B -d<x <d V, =43inch’
el rANEE 3 >d n=8Kes
B =1500Mpa
cld-x)yxu-hf x<-d L=0.015m
gy =1c(d=x)Jx,=F —c(x,+d)yP-x, -d<x<d fric =1000N.s / m
—c(x,+d)\|P-x, x,>d
X, =u
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k Flow diagram for coupled actuator-beam control
N simulation
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Solve with Matlab Simulink

Flywrate from pressusé A

Pressure dynamics A

P

essure dynamics 3

T%m\\
n2 xdol\
\HBOMZ

In1 u
Out1
Actuator dynamics
Out1 In2
[pa— PI Controller
Reference signal for actuator
u

Actuator

Shear_stress
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Possible causes of problem
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When actuator is given a sinusoidal reference input at a frequency
half the resonance frequency, the resonance frequency of beam
gets excited.

N

./ Nonlinearitvies at Beam exhibits

Nonlinear pressure- bearing generate nonlinear behavior
flow equations disturbance torque? (probably from the
generate resonance heavy mold mass)?
frequency?

\ Investigate with model simulation
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o Mockup Simulation with well-tuned controller:
‘”'guouz Is nonlinear pressure-flow equation the cause of problem?
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Reference input to actuator Actuator displacement

£ x 1078t half the resonance frequency x 10°at half the resonance frequency
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£ E +  Careful tuning of PI

5 c controller (kp=1.6,

5 £ k=0.2) ensures that

g £\ | the actuator output has
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é 5 2 9 + Distortions less than those
§ £ noticed in experiments
2 10 E 0.2 *  Nonlinear pressure-flow
© 2 equations may not be the
o kel i
z 5 S 04 source of trouble if controller

0 02 04 06 08 1 0 02 04 06 08 1 is properly tuned.
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KN Other sources of resonance frequency
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« Simulation indicates bearing friction torque is probably not the
source of disturbance.

» Other types of bearing vibrations have not yet been considered.

* In case beam dynamics is identified to be the source of problem,
a more complicated higher dimension beam model will be
considered.

» Earlier reports on this problem by other groups indicate that the
actuator is the source of resonance harmonic and the slow
spool update rate could be a reason for this.

* Hence other unmodeled dynamics and nonlinearities not
inherent in the actuator need to be considered
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O Mockup Simulation with delay in spool input
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Reference input to actuator Actuator displacement
g X 10'3at half the resonance frequency at half the resonance frequency
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Conclusions and future work

« Simulations suggest that nonlinear pressure-flow
behavior of the actuator does not explain the
resonance frequency.

« Additional nonlinearities and unmodeled
dynamics such as delay might be responsible.

» Future experiments will be performed using the
mockup to quantify these nonlinearities by
measuring actuator pressure, & displacement
and velocity at various points in the beam

* Improving controller design depends on the
source of the disturbance.
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